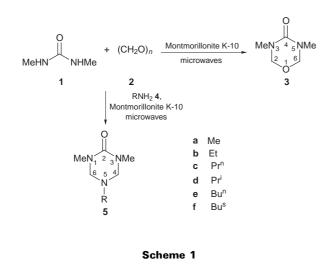
Microwave-assisted Synthesis of Triazones and 4-Oxo-oxadiazinane in Dry Media†

Saeed Balalaie,*^a Mehri S. Hashtroudi^b and Ali Sharifi^c

^a Chemistry Department, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran ^b Materials and Energy Research Center, P.O. Box 14155-4777, Tehran, Iran


^c Chemistry and Chemical Engineering Research Center, P.O. Box 14355-186, Tehran, Iran

Three component condensation of N,N'-dimethylurea, paraformaldehyde and primary amines using montmorillonite K-10 in dry media under microwave irradiation leads to triazones **5a–f** in high yields.

Acceleration of organic reactions by microwave dielectric heating has been widely exploited. Microwave irradiation in solvent-free conditions has also shown its utility in organic synthesis.² In this regard, montmorillonite clays which have received considerable attention as catalysts owing to their characteristic properties, are used for many organic reactions.³ 1,3,5-tri-N-substituted hexahydro-2-oxo-1,3,5-triazines (triazones) have been known for many years in a variety of contexts.⁴⁻⁶ Triazones are used as an amino protecting groups,^{7,8} for the synthesis of polyamine,⁹ polyfunctional amino acids and amino alcohols.⁷ Many water-soluble triazones are used as fertilizers.¹⁰ Triazones may be formed from a primary amine (a hydrochloric salt of a primary amine), an N, N'-substituted urea and aqueous formaldehyde in the presence of a co-solvent such as dioxane and toluene. 4-Oxo-oxadiazinane has been prepared by the condensation of a symmetrical disubstituted urea with aqueous formaldehyde in a 1:2 molar ratio in the presence of hydrochloric acid.⁴

We report here the synthesis of 4-oxo-oxadiazinane 3 and triazones 5a-f using montmorillonite K-10 under solvent free conditions and microwave irradiation.

Condensation of dimethyl urea and paraformaldehyde, supported on montmorillonite K-10 in dry media (without solvent and mineral acid) using microwave irradiation gave 4-oxo-oxadiazinane 3, and three component condensation of dimethyl urea, paraformaldehyde and primary amines supported on montmorillonite K-10 under microwave irradiation in dry media resulted in formation of triazones 5a-f.

* To receive any correspondence (*e-mail*: Balalaie@sc.kntu.ac.ir). † This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1999, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*).

Table 1	HNMR spectra (δ) and yields of 4-oxo-oxadiazinane	Э
and triazo	es 5a –f	

Compound	Ring protons	Me ₂ -3,5 protons	Substituent protons	Yield(%) ^a
3	4.80	2.95		67
5a	4.05	2.80		71
5b	4.10	2.85	2.75 (q, 2H, CH ₂) 1.05 (t, 3H, CH ₃)	76
5c	4.20	2.80	2.70 (t, 2H, CH ₂) 1.50 (m, 2H, CH ₂) 1.00 (t, 3H, CH ₃)	79
5d	4.10	2.80	2.70 (m, 1H, CH) 1.00 (d, $J = 5.7$ Hz, 6H, 2CH ₃)	83
5e	4.10	2.90	2.80 (t, 2H, CH ₂) 2.20 (m, 2H, CH ₂) 1.30 (m, 2H, CH ₂) 1.90 (t, 3H, CH ₃)	84
5f	4.20	2.90		74

^aIn all the experiments, the irradiation time used was 6 min.

Montmorillonite K-10 has Lewis acid character and it seems that in the presence of montmorillonite K-10, paraformaldehyde is slowly decomposed to formaldehyde which reacts with dimethyl urea and amines. Formation of 4-oxo-oxadiazinane 3 may occur by the attack of nucleophilic urea nitrogens on formaldehyde. After dehydration on the surface, 4-oxo-oxadiazinane 3 is formed. Formaldehyde may combine with a primary amine to give an imine-formaldehyde copolymer or oligomeric formaldehyde adducts which can be converted to triazones.⁷ In the ¹H NMR spectrum (Table 1) of oxadiazinane 3, methylene hydrogens resonate at δ 4.80 and in IR spectrum, the carbonyl group of the amide absorbs in $1650 \,\mathrm{cm}^{-1}$.^{7–11} The ring protons in triazones 5a-f resonate at δ 4.05-4.20 and in the IR spectra these compounds show a strong amide bond absorption in the region $1620-1640 \,\mathrm{cm}^{-1}$.

In conclusion, the microwave irradiation of paraformaldehyde, dimethylurea and amines under solvent free (dry) conditions on montmorillonite K-10 provides triazones. High yields, low reaction times, mild reaction conditions, and easy set-up and work-up are advantages of this method compared to other methods.

Experimental

IR spectra were recorded on a Shimadzu IR-408 spectrometer. ¹H NMR were measured on a Bruker AG 80 (80 MHz) and JEOL FX-90 (90 Hz) spectrometers in CDCl₃ and chemical shifts are expressed downfield from tetramethylsilane as internal reference. A domestic microwave (Moulinex FM 2735 A) at 2450 MHz (850 W) was used in all experiments. General Procedures for Preparation of Triazones 5a-f.—264 mg (3 mmol) N,N'-dimethylurea, 1 g paraformaldehyde, 3 mmol primary amine 4a-f and 2 g montmorillonite K-10 were irradiated by microwave in a Teflon vessel. The reaction mixture was filtered and washed with water. The organic phase was separated and dried with Na₂SO₄ and concentrated by vacuum distillation.

Purification of the crude material by chromatography on a short column (silica gel, 70–230 mesh) and elution with dichloromethane, or vacuum distillation afforded triazones 5a-f. The obtained yields were in the range of 67-84%.

We are grateful to the Research Council of K. N. Toosi, University of Technology for financial support.

Received, 9th February 1999; Accepted, 8th March 1999 Paper E/9/01114E

References

- R. A. Abramovitch, Org. Prep. Proc. Int., 1991, 23, 683; D. M.
 P. Mingos and D. R. Baghurst, Chem. Soc. Rev., 1991, 20, 1;
 S. Caddick, Tetrahedron, 1995, 51, 10403; C. R. Strauss and R. W. Trainer, Aust. J. Chem., 1995, 48, 1665.
- L. Deloude and P. Laszlo, J. org. Chem., 1996, 61, 6360; R. S. Varma and R. Dahiya, SynLett, 1997, 857; R. S. Varma and H. M. Meshram, Tetrahedron Lett., 1997, 38, 7973.

- R. L. Augustine, Heterogenous Catalysis for the Synthetic Chemist, Marcell Decker Inc., New York, 1996, pp. 579–584;
 K. Smith, Solid Supports and Catalysts in Organic Synthesis, Ellis Harwood, Chichester, 1992; B. Perio, M. J. Dozias, P. Jacquault and J. Hamelin, Tetrahedron Lett., 1997, 38, 7867;
 S. Jolivet-Fauchet, J. Hamelin, F. Texier-Boullet, L. Toupet and P. Jacquault, Tetrahedron, 1998, 54, 4561; K. Toshima, Y. Ushilci, G. Matsuo and S. Matsumura, Tetrahedron Lett., 1997, 38, 7375.
- 4 H. Peterson, Synthesis, 1973, 243.
- 5 D. E. Hardies and D. K. Krass, US Pat., 4150220, 1979 (Chem. Abstr., 1979, 91, P57062e).
- D. E. Hardies, US Pat., 4152516, 1979 (Chem. Abstr., 1979, 91, P57063f).
- 7 S. Knapp, J. J. Hale, M. Bastos, A. Molina and K. Yu, J. Org. Chem., 1992, 57, 6239.
- 8 S. Knapp, J. J. Hale, M. Bastos and F. S. Gibson, *Tetrahedron Lett.*, 1990, **31**, 2109.
- V. J. Jasys et al., Tetrahedron Lett., 1988, 29, 6223; B. Carboni, M. Vaultier and R. Carrie, Tetrahedron Lett., 1988, 29, 1279; R. J. Bergeron and J. S. McManis, J. Org. Chem., 1988, 53, 3108; S. Knapp and A. T. Levorse, Tetrahedron Lett., 1987, 28, 3213.
- 10 E. F. Hawkins, US Pat., 4778510, 1988.
- 11 B. R. Larsen, F. M. Nicolaisen and T. Nielsen, J. Mol. Struct., 1976, 32, 247.